
Understanding Lua’s Garbage Collection
Towards a Formalized Static Analyzer

Mallku Soldevila
FAMAF, UNC and CONICET

Argentina
mes0107@famaf.unc.edu.ar

Beta Ziliani
FAMAF, UNC and CONICET

Argentina
beta@mpi-sws.org

Daniel Fridlender
FAMAF, UNC
Argentina

fridlend@famaf.unc.edu.ar

Appendices

A PROPERTIES OF GC
To reach to a proof of the correctness of

GC
7→ we will require, first,

to check for several lemmas about simple properties that hold for
both,

L
7→ and

GC
7→.

Properties preserved by
L
7→. The first lemma states that once a

binding becomes amenable for collection, it will remain in that
state after any computation step from

L
7→.1 For its proof we will

assume that the reader is familiar with the model presented in [?].
A complete proof would require case analysis on every computation
step from said model. For reasons of brevity, we will consider just
a few cases.

Lemma A.1. For configurations (σ1 : θ1 : s1), (σ2 : θ2 : s2), if
(σ1 : θ1 : s1)

L
7→ (σ2 : θ2 : s2), for (σ1 : θ1 : s1) well-formed, then

∀l ∈ dom(σ1)∪dom(θ1), ¬reach(l, s1,σ1,θ1) ⇒ ¬reach(l, s2,σ2,θ2).

Proof. We will follow the modular structure of
L
7→ to reason

over the step that transforms (σ1 : θ1 : s1) into (σ2 : θ2 : s2). We
have the following cases for the step taken from

L
7→:

- The computation does not depend on the content of the stores
(i.e., it does not change bindings from a store or dereferences
locations): then, it can be seen, by case analysis on each
computation rule, that such computation step does not in-
troduce any reference into the instruction term. What could
happen is that the root set is reduced, by deleting refer-
ences present into s1. In any case, for a given l ∈ dom(σ1) ∪
dom(θ1), if ¬reach(l, s1,σ1,θ1) it must be the case that also
¬reach(l, s2,σ2,θ2).

- The computation changes or dereferences locations fromσ1 : for
a given l ∈ dom(σ1)∪dom(θ1), such that ¬reach(l, s1,σ1,θ1)
let us assume that reach(l, s2,σ2,θ2). To reason about the
statement, we would need to do case analysis on every pos-
sible computation step that interacts with the values store.
As an example, let us consider the implicit dereferencing of
references to σ1.2 Then it must be the case that s1 matches
against the pattern E[[r]], for an evaluation context E and a
reference r , and the computation is:

1Note that such simple property does not hold anymore if we introduce weak tables
or finalization.
2In [?], for purposes of simplification of the desugared Lua code from test suites, we
included implicit dereferencing of references to values, as done in [?].

Conference’17, July 2017, Washington, DC, USA
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

σ1 : θ1 :
s1
=

E[[r]]
L
7→ σ1 : θ1 :

s2
=

E[[σ1(r)]]

where both stores remain unmodified after the computation.
Then, the root set just changed by replacing r by the refer-
ences in σ1(r). If ¬reach(l, s1,σ1,θ1) but
reach(l, s2,σ2,θ2), this would mean that l is reachable from
the references in σ1(r). But in s1, the references from σ1(r)
were also reachable, making l reachable in s1, contradicting
our hypothesis. Then, it must be the case that if
¬reach(l, s1,σ1,θ1), l remains unreachable in (σ2 : θ2 : s2).

- The computation changes or dereferences locations from θ1: let
us assume that for a given l ∈ dom(σ1) ∪ dom(θ1),
¬reach(l, s1,σ1,θ1) ∧ reach(l, s2,σ2,θ2). Again we will just
analyze one case, among every computation that interacts
with the store θ1. We will consider the rule that describes
how tables are allocated in θ1. Then, it must be the case that
s1 matches against the pattern E[[t]], for an evaluation
context E and a table constructor t , where every field haven
been evaluated, making the table ready for allocation. Then,
the (simplified) computation is:

tid < dom(θ1) θ2 = (tid, (t, nil, ⊥)), θ1

(σ1 : θ1 : E[[t]])
L
7→ (σ1 : θ2 : E[[tid]])

where the values store remains unchanged, i.e., σ2 = σ1.
Then, the root set just changed by replacing the references
in t by the fresh table identifier tid . If ¬reach(l, s1,σ1,θ1)
but reach(l, s2,σ2,θ2), this would mean that l = tid , which
cannot be the case as l ∈ dom(σ1) ∪ dom(θ1) and
tid < dom(σ1) ∪ dom(θ1). Then it must be the case that if
¬reach(l, s1,σ1,θ1), l remains unreachable in (σ2 : θ2 : s2).

□

The following definition and lemma capture a standard concept
in operational semantics for imperative languages: for a given in-
struction term, the outcome of its execution under given stores will
depend on the content of the reachable portion of said stores.

Definition A.2. For well-formed configurations (σ1 : θ1 : s) and
(σ2 : θ2 : s), we will say that both configurations coincide in the
reachable portion of their stores, denoted

(σ1 : θ1 : s)
rch
∼ (σ2 : θ2 : s)

if and only if ∀l ∈ dom(σ1) ∪ dom(θ1)/reach(l, s,σ1,θ1), then:
- reach(l, s,σ2,θ2)
- l ∈ dom(σ1) ⇒ σ1(l) = σ2(l)
- l ∈ dom(θ1) ⇒ θ1(l) = θ2(l)

and the same holds ∀l ∈ dom(σ2) ∪ dom(θ2).

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Mallku Soldevila, Beta Ziliani, and Daniel Fridlender

In the previous definition, we are assuming that, if needed, it
is always possible to provide a renaming of locations from both
configurations to make them equivalent in the sense expressed by
rch
∼ . Finally, it is easy to show that rch∼ is an equivalence relation.
The important property, satisfied by configurations that coincide

in the reachable portion of their stores, is stated in the following
lemmas:

Lemma A.3. For well-formed configurations (σ1 : θ1 : s1) and
(σ2 : θ2 : s1), such that:

(σ1 : θ1 : s1)
rch
∼ (σ2 : θ2 : s1)

if ∃(σ3 : θ3 : s2)/(σ1 : θ1 : s1) L
7→ (σ3 : θ3 : s2), then

∃(σ4 : θ4 : s2)/(σ2 : θ2 : s1) L
7→ (σ4 : θ4 : s2) and:

(σ3 : θ3 : s2)
rch
∼ (σ4 : θ4 : s2)

Proof. We will follow the modular structure of
L
7→ to reason

over the step that transforms (σ2 : θ2 : s1) into (σ4 : θ4 : s2):
- The computation does not change bindings from a store or
dereferences locations : then it must be the case that every
information from the stores is already put into the instruc-
tion term s1 so as to make the computation from

L
7→ viable,

without regard to the content of the stores. Also, after the
computation the stores are not modified. It implies that:

(σ1 : θ1 : s1)
L
7→ (

σ1
=
σ3 :

θ1
=

θ3 : s2) ∧ (σ2 : θ2 : s1)
L
7→ (

σ2
=
σ4 :

θ2
=

θ4 : s2)

The root set of references in both configurations,
(σ3 : θ3 : s2) and (σ4 : θ4 : s2), is the same. And, since
(σ1 : θ1 : s1)

rch
∼ (σ2 : θ2 : s1) and the stores are not

modified after the step from
L
7→, it follows that the reachable

portion of the stores, from the root set defined by s2, must
coincide, according to rch

∼ , in the configurations obtained
after

L
7→. Hence:

(σ3 : θ3 : s2)
rch
∼ (σ4 : θ4 : s2)

- The computation changes or dereferences locations from σ1:
we would need to do case analysis on each computation that
interacts with the value store. As an example, let us consider
the implicit dereferencing of references to the values store.
The hypothesis can be rewritten as:

(σ1 : θ1 : s1)
L
7→ (

σ1
=
σ3 :

θ1
=

θ3 : s2)

where s2 contains the value associated with the reference
dereferenced by

L
7→. Because:

(σ1 : θ1 : s1)
rch
∼ (σ2 : θ2 : s1)

the dereferencing operation will return the same result, if
executed over σ2. Then:

(σ2 : θ2 : s1)
L
7→ (

σ2
=
σ4 :

θ2
=
θ4 : s2)

Finally, because the stores are unmodified, after the step
from

L
7→, and since the reachable portions of the stores in

the original configurations coincide, according to rch
∼ , then,

it must be the case that the reachable portions of the stores

obtained after
L
7→must also coincide, if we consider the same

root of references. Hence:
(σ3 : θ3 : s2)

rch
∼ (σ4 : θ4 : s2)

- The computation changes or dereferences locations from θ1:
we would need to do case analysis on each computation
that interacts with θ1. As an example, let us consider table
allocation. The hypothesis can be rewritten as:

(σ1 : θ1 : E[[t]])
L
7→ (

σ3
=
σ1 :

θ3
=

θ1 ⊎ {(tid, t, nil, ⊥)} : E[[tid]])

Then we can assume that:

(σ2 : θ2 : E[[t]])
L
7→ (

σ4
=
σ2 :

θ4
=

θ2 ⊎ {(tid, t, nil, ⊥)} : E[[tid]])

where, if needed, we could apply a consistent renaming of
tables’ id in (σ2 : θ2 : E[[t]]), such that it preserves its equiv-
alence with (σ1 : θ1 : E[[t]]) and tid is available as a fresh
table identifier. Then, it follows immediately that:

(σ3 : θ3 : E[[tid]])
rch
∼ (σ4 : θ4 : E[[tid]])

□

Finally, the following lemma express an intuitive property that
holds among final configurations that happen to be equivalent,
according to rch

∼ :

Lemma A.4. For final configurations (σ1 : θ1 : s) and (σ2 : θ2 : s),
such that (σ1 : θ1 : s)

rch
∼ (σ2 : θ2 : s), then:

result(σ1 : θ1 : s) = result(σ2 : θ2 : s)

Proof. The result will follow directly from the definition of
result, in Figure 14, and rch

∼ . We will do a case analysis on the
structure of s, for the configuration (σ1 : θ1 : s), considering that it
is the final state of a convergent computation:

• s = returnv1, ..., vn : for simplicity we consider the case
n = 1, and we omit a possible context E where the return
statement could occur, since it is not taken into account by
the notion of result of a program, as defined by result. For
larger values of n the reasoning remains the same:
– v1 ∈ number ∪ string: then, neither result(σ1 : θ1 : s) nor
result(σ2 : θ2 : s) depend on the content of the stores.
Hence, result(σ1 : θ1 : s) = result(σ2 : θ2 : s).

– v1 ∈ tid ∪ cid : let us consider that v1 = tid for some
tid ∈ dom(θ1) (the reasoning for the case v1 ∈ cid is
similar). Then, by definition of result:
result(σ1 : θ1 : return tid) = σ1 |S : θ1 |T : return tid

where

S =

⋃
r ∈ dom(σ1), reach(r,return tid,σ1,θ1)

r

T =
⋃

id ∈ dom(θ1), reach(id,return tid,σ1,θ1)
id

Then, clearly result(σ1 : θ1 : return tid) is depending on
the reachable portions of σ1 and θ1, beginning with the
root set defined by tid . Because

(σ1 : θ1 : tid)
rch
∼ (σ2 : θ2 : tid)

the reachable portions of both configurations coincide.
Hence, result(σ1 : θ1 : s) = result(σ2 : θ2 : s).

– s = error v : this case is identical to the previous one.

Understanding Lua’s Garbage Collection Conference’17, July 2017, Washington, DC, USA

– s = ;: then, result(σ1 : θ1 : s) is not depending on the
content of the stores, and so is the case for
result(σ2 : θ2 : s). Hence,

result(σ1 : θ1 : s) = result(σ2 : θ2 : s)
□

Properties preserved by
GC
7→. A simple property to ask for is that

reachable bindings are preserved, in the sense that they are still
reachable and the value to which a given location is mapped is not
changed after

GC
7→. We express this property with the following two

lemmas:

Lemma A.5. For a well-formed configuration (σ1 : θ1 : s), if
(σ1 : θ1 : s)

GC
7→ (σ2 : θ2 : s), for some configuration (σ2 : θ2 : s), then

∀r ∈ dom(σ1), reach(r, s,σ1,θ1) ⇒ σ1(r) = σ2(r). The analogous
holds for any id ∈ dom(θ1).

Proof. Let r ∈ dom(σ1), reach(r, s,σ1,θ1). Then, byDefinition 3.2
and

GC
7→, it must be the case that gc(s,σ1,θ1) = (σ2,θ2) and σ1(r) =

σ2(r).
For elements from dom(θ1) the reasoning is analogous to the

previous case. □

Lemma A.6. For a well-formed configuration (σ1 : θ1 : s), if
(σ1 : θ1 : s)

GC
7→ (σ2 : θ2 : s), for some configuration (σ2 : θ2 : s), then

∀l ∈ dom(σ1) ∪ dom(θ1), reach(l, s,σ1,θ1) ⇒ reach(l, s,σ2,θ2).

Proof. Wewill prove it by induction on theminimum number of
dereferences of locations from σ1 or θ1 that needs to be performed
to reach to a given location l, for which reach(l, s,σ1,θ1) holds. By
looking at Definition 3.1, one of the following cases should hold:

- l ∈ s: then it follows directly that reach(l, s,σ2,θ2).
- ∃r ∈ dom(σ1), l ∈ σ1(r), which is in a reachability path of
minimumdistance, from the root set to r : then reach(r, s,σ1,θ1),
and by inductive hypothesis, reach(r, s,σ2,θ2). Also, by lemma
A.5, σ1(r) = σ2(r). Then l ∈ σ2(r) and reach(l, s,σ2,θ2), by
definition.

- ∃tid ∈ dom(θ1), l ∈ π1(θ1(tid)), which is in a reachability
path of minimum distance, from the root set to l: then
reach(tid, s,σ1,θ1), and by inductive hypothesis,
reach(tid, s,σ2,θ2). Also, by Lemma A.5, θ1(tid) = θ2(tid).
Then l ∈ π1(θ2(tid)) and reach(l, s,σ2,θ2) by definition.

- ∃cid ∈ dom(θ1), l ∈ θ1(cid), which is in a reachability path
of minimum distance, from the root set to l: the reasoning
is analogous to the previous case. It follows directly that
reach(l, s,σ2,θ2).

- ∃tid ∈ dom(θ1), l ∈ π2(θ2(tid)), which is in a reachability
path of minimum distance, from the root set to l: the sit-
uation is analogous to the previous case. It follows directly
that reach(l, s,σ2,θ2).

□

Corollary A.7. For well-formed configurations
(σ1 : θ1 : s) and (σ2 : θ2 : s), if (σ1 : θ1 : s)

GC
7→ (σ2 : θ2 : s), then

(σ1 : θ1 : s)
rch
∼ (σ2 : θ2 : s).

Proof. It is a direct consequence of lemmas A.5, A.6 and the
definition of rch∼ . □

While the following lemma directly refers to the notion of well-
formedness of configurations, it is not required to describe in detail
such notion in order to gain confidence about the following state-
ment and its proof, since they are intuitive enough (for details about
well-formedness, we refer the reader to [?]). Also, the lemma will
allow us to extend the mentioned progress property for

L
7→ to the se-

mantics obtained adding
GC
7→. In particular, it will guarantee that the

introduced notion of observations over programs is well-defined
also for

L
7→ ∪

GC
7→, allowing us to state the desired correctness for

GC
7→.

Lemma A.8. For a well-formed configuration (σ1 : θ1 : s), if (σ1 :
θ1 : s)

GC
7→ (σ2 : θ2 : s), for some configuration (σ2 : θ2 : s), then

(σ2 : θ2 : s) is well-formed.

Proof. From the definition of
GC
7→, it follows that the step does

not change the instruction term. Also, by the previous lemmas, it
follows that

GC
7→ does not introduce dangling pointers. They also

state that
GC
7→ does not modify the stores in any other way, besides

removing garbage. Then, it must be the case that also (σ2 : θ2 : s)
is well-formed. □

Lemma A.9. Over a well-formed configuration (σ : θ : s), only a
finite number of

GC
7→ steps can be applied.

Proof. By Definition 3.2 and
GC
7→, if

(σ : θ : s)
GC
7→ (σ ′ : θ ′ : s)

then it must be the case that either σ ′ or θ ′ is a proper subset of
σ or θ , respectively. Then, being the stores partial finite functions,
it is clear that GC can be performed at most a finite number of
steps. □

The following lemma is a useful tool taken from [?]. It codifies
a simple intuition of plain GC: it must be possible to postpone any
GC step, without changing the observations of the program. In its
statement we use the fact that

GC
7→ does not change the instruction

term.

Lemma A.10 (Postponement). For a given well-formed configu-
ration (σ1 : θ1 : s1), if

(σ1 : θ1 : s1)
GC
7→ (σ2 : θ2 : s1)

L
7→ (σ3 : θ3 : s2).

then ∃(σ4 : θ4 : s2) such that:

(σ1 : θ1 : s1)
L
7→ (σ4 : θ4 : s2)

GC
7→ (σ ′

3 : θ
′
3 : s2)

where (σ3 : θ3 : s2)
rch
∼ (σ ′

3 : θ
′
3 : s2).

Proof. We will follow the modular structure of
L
7→ to reason

over the step that transforms (σ2 : θ2 : s1) into (σ3 : θ3 : s2):
- The computation does not change bindings from a store or
dereferences locations: then it must be the case that every in-
formation from the stores is already put into the instruction
term s1 so as to make the computation from

L
7→ viable, with-

out regard to the content of the stores. Then, the hypothesis
can be rewritten as:

(σ1 : θ1 : s1)
GC
7→ (σ2 : θ2 : s1)

L
7→ (σ2 : θ2 : s2)

Conference’17, July 2017, Washington, DC, USA Mallku Soldevila, Beta Ziliani, and Daniel Fridlender

If we take (σ4 : θ4 : s2) = (σ1 : θ1 : s2), then we can assert
that:

(σ1 : θ1 : s1)
L
7→ (σ1 : θ1 : s2) = (σ4 : θ4 : s2)

where we exploited the fact that, for the previous
L
7→ step

to be performed, the actual content of the stores does not
affect the applicability and the outcome of said computation.
Then, by Lemma A.1, if a binding was ready to be collected
in (σ1 : θ1 : s1) it will remain in that state in (σ1 : θ1 : s2).
So, by the non-deterministic nature of

GC
7→, we could ask for

it to remove the same bindings that changed the stores from
(σ1 : θ1 : s1) into the stores from (σ2 : θ2 : s1). Hence, it
must be the case that (σ1 : θ1 : s2)

GC
7→ (σ2 : θ2 : s2) holds. We

obtained:
(σ1 : θ1 : s1)

L
7→ (σ1 : θ1 : s2)

GC
7→ (σ2 : θ2 : s2)

Finally, (σ3 : θ3 : s2)
rch
∼ (σ ′

3 : θ
′
3 : s2) because

(σ3 : θ3 : s2) = (σ2 : θ2 : s2) = (σ ′
3 : θ

′
3 : s2)

- The computation changes or dereferences locations from σ1:
we would need to do case analysis on each computation that
interacts with the value store. As an example, let us consider
the implicit dereferencing of a reference to σ1. That is, the
L
7→ step should be:

(σ2 : θ2 :
s1
=

E[[r]])
L
7→ (σ2 : θ2 :

s2
=

E[[σ2(r)]])

Then, the hypothesis can be rewritten as:

(σ1 : θ1 : s1)
GC
7→ (σ2 : θ2 : s1)

L
7→ (σ2 : θ2 : s2)

If we take (σ4 : θ4 : s3) = (σ1 : θ1 : s2), we can assert that:

(σ1 : θ1 :
s1
=

E[[r]])
L
7→ (σ1 : θ1 :

s2
=

E[[σ2(r)]])

because r is reachable in (σ1 : θ1 : s1), and the
GC
7→ step from

the hypothesis preserves its binding, in the sense expressed
in Lemma A.5: hence, if it was possible to perform the deref-
erencing in (σ2 : θ2 : s1) (by hypothesis), it must be possible
to perform it in (σ1 : θ1 : s1), obtaining the same result.
Finally, by preservation of bindings ready for collection after
a

L
7→ step, Lemma A.1, and the non-deterministic behaviour

of
GC
7→, we could ask for the GC step to remove exactly the

necessary bindings so that (σ1 : θ1 : s2)
GC
7→ (σ2 : θ2 : s2)

holds. We obtained:
(σ1 : θ1 : s1)

L
7→ (σ1 : θ1 : s2)

GC
7→ (σ2 : θ2 : s2)

Finally, (σ3 : θ3 : s2)
rch
∼ (σ ′

3 : θ
′
3 : s2) because

(σ3 : θ3 : s2) = (σ2 : θ2 : s2) = (σ ′
3 : θ

′
3 : s2)

- The computation changes or dereferences locations from θ1:
we would need to do case analysis on each computation
that interacts with θ1. As an example, let us consider table
allocation. Then, the hypothesis can be rewritten as:

(σ1 : θ1 : s1)
GC
7→ (σ2 : θ2 : s1)

L
7→ (σ2 : θ2 ⊎ {(tid, t)} :

s2
=

E[[tid]])

for an adequate internal representation of a table, t , and table
identifier tid , that, for our purposes, it will be useful if
tid < dom(θ1). If it is not the case, we can continue with

our reasoning over an appropriate α-converted configura-
tion, where the references in (σ1 : θ1 : s1) are consistently
changed so as to make tid < dom(θ1). It is because of cases
like this one that we cannot assert a stronger postponement
statement, as the one in [?]: we are not talking about con-
vergence towards a single configuration; we need to think
in terms of rch∼ -equivalent configurations.
If we take

(σ4 : θ4 : s3) = (σ1 : θ1 ⊎ {(tid, t)} : s2)
we know that:

(σ1 : θ1 : s1)
L
7→ (σ1 : θ1 ⊎ {(tid, t)} : s2)

where we can ask for the instruction term to be exactly
s2 = E[[tid]]. By Lemma A.1 we know that every binding
which is ready for collection in (σ1 : θ1 : s1) is in the same
state in (σ1 : θ1 ⊎ {(tid, t)} : s2). Even more, such bindings
just belongs to σ1 or θ1. Then, by the non-deterministic
nature of

GC
7→ we could ask for it to remove just the necessary

bindings so as to make true

(σ1 : θ1 ⊎ {(tid, t)} : s2)
GC
7→ (σ2 : θ2 ⊎ {(tid, t)} : s2).

Then, the following holds:

(σ1 : θ1 : s1)
L
7→ ...

GC
7→ (σ2 : θ2 ⊎ {(tid, t)} : s2)

Finally, (σ3 : θ3 : s2)
rch
∼ (σ ′

3 : θ
′
3 : s2) because

(σ3 : θ3 : s2) = (σ2 : θ2 ⊎ {(tid, t)} : s2) = (σ ′
3 : θ

′
3 : s2)

□

Correctness of simple GC. The expected statement of GC cor-
rectness should mention that, for a given configuration, the ob-
servations under

L
7→ should be the same that those under

L+GC
7→ (i.e.,

L
7→ ∪

GC
7→). However, under

L
7→ and

L+GC
7→ we expect the observations

to be just a singleton: the programs either diverge or reach to a end,
returning some results or an error object. Giving this observation,
we could change the statement of GC correctness to reach to a
property that can be proved with less effort: given a configuration,
under

L
7→ its execution reaches to a end, if and only if its execution

reaches to an end under
L+GC
7→ , and, in both cases, what is returned

(either values or error objects) is the same.
The stated property will imply the preservation of observations,

as defined in Definition 4.2, but it will allow us to focus just on
convergent computations; preservation of divergent computations
will be a consequence of the double implication structure of the
statement:

Theorem A.11 (GC correctness). For a given well-formed con-
figuration σ : θ : s,

(σ : θ : s) ⇓ L
7→

(σ ′ : θ ′ : s′) ⇔ (σ : θ : s) ⇓L+GC
7→

(σ ′′ : θ ′′ : s′′)

and result(σ ′ : θ ′ : s′) = result(σ ′′ : θ ′′ : s′′).

Proof. Let us assume that (σ : θ : s) ⇓ L
7→

(σ ′ : θ ′ : s′). Then
(σ ′ : θ ′ : s′) is a final configuration where result is defined. Because
L
7→ ⊆

L+GC
7→ , it is always possible to emulate the previous trace by not

using
GC
7→ steps. Then, (σ : θ : s) ⇓L+GC

7→
(σ ′ : θ ′ : s′), where it follows

Understanding Lua’s Garbage Collection Conference’17, July 2017, Washington, DC, USA

that, in both cases, the computations returns the same, under
L+GC
7→

and
L
7→.

On the other hand, let us assume that

(σ : θ : s) ⇓L+GC
7→

(σ ′ : θ ′ : s′)

Then, it must be the case that there exist a finite trace of computa-
tion steps, as follows:

(σ : θ : s)
L+GC
7→ (σ1 : θ1 : s1)

L+GC
7→ ...

L+GC
7→ (σn : θn : sn)

where (σn : θn : sn) = (σ ′ : θ ′ : s ′) is a final configuration over
which result is defined.

By applying inductive reasoning over the number of computation
steps and the Postponement Lemma A.10, it can be shown that we
can rewrite the previous trace as follows:

(σ : θ : s)
L
7→ ...

L
7→ (σi′ : θi′ : si′)

GC
7→ ...

GC
7→ (σn′ : θn′ : si′)

where every computation that does not involve GC is performed
at the beginning. We obtained a convergent trace consisting only
in

L
7→ steps. That is:

(σ : θ : s) ⇓ L
7→

(σi′ : θi′ : si′)

What remains is to see if the result is also preserved. To that end,
note that the postponement lemma used also tells us that

(σn′ : θn′ : si′)
rch
∼ (σn : θn : sn)

Then, because final configurations which are rch
∼ represent the

same result, according to Lemma A.4, it follows that

result(σn′ : θn′ : si′) = result(σn : θn : sn)

Finally, because rch
∼ is closed under

GC
7→ steps, Lemma A.7, it must

be the case that:

(σi′ : θi′ : si′)
rch
∼ (σn′ : θn′ : si′)

Hence,

result(σi′ : θi′ : si′) = result(σn′ : θn′ : si′) = result(σn : θn : sn)

□

An immediate corollary of the previous theorem is that, under
L+GC
7→ , the set of observations over programs is a singleton, even
under the non-determinism nature of

GC
7→:

Corollary A.12. For a well-formed configuration σ : θ : s,
|obs(σ : θ : s,

L+GC
7→)| = 1

Proof. It follows immediately from the previous theorem and
the determinism of programs under

L
7→. □

Now, based on the observations of the beginning of this section,
we can state an equivalent version of correctness for simple GC,
but in terms of the notion of observations previously defined:

Corollary A.13 (GC correctness). For a given well-formed
configuration σ : θ : s,

(σ : θ : s,
L
7→) ≡ (σ : θ : s,

L+GC
7→)

Proof. It follows directly from the previous corollary, together
with TheoremA.11. Then, if result(σ ′,θ ′, s′) ∈ obs(σ : θ : s,

L
7→), for

(σ : θ : s) ⇓ L
7→

(σ ′ : θ ′ : s′), by theorem A.11, the previous occurs if
and only if (σ : θ : s) ⇓L+GC

7→
(σ ′′ : θ ′′ : s′′), where

result(σ ′,θ ′, s′) = result(σ ′′,θ ′′, s′′)

Hence result(σ ′,θ ′, s′) ∈ obs(σ : θ : s,
L+GC
7→), and we can conclude

that obs(σ : θ : s,
L
7→) = obs(σ : θ : s,

L+GC
7→). The converse is analo-

gous.
If ⊥ ∈ obs(σ : θ : s,

L
7→), by correctness of GC, it must happen if

and only if ⊥ ∈ obs(σ : θ : s,
L+GC
7→), and because of the determinism

of both,
L+GC
7→ and

L
7→, we can conclude that:

obs(σ : θ : s,
L
7→) = obs(σ : θ : s,

L+GC
7→)

The converse is analogous. □

	Appendices
	A Properties of GC

